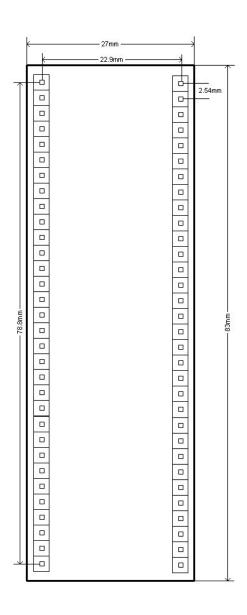
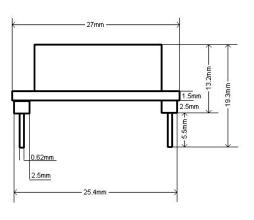

AVR-Development Module

Model: AL-AVREB_CAN

- Summary
- Measures
- Description
- Electrical Characteristics
- Programming
- Settings

Summary


All description in **BLUE** concern the internal connection


Attention! Polarity reversal and overvoltage may cause a destruction of the electronic components!!!

-2- © 2011 ALVIDI

Measures

-3-

© 2011 ALVIDI

Description

- Controller: Atmel AVR AT90CAN128-16AU up to 16 MHz

- Supply voltage: 3 - 5V

- Module size: W x H x D 27mm x 83mm x 19.3mm

- Quartz socket: simple and fast quartz exchange

- PC-Connection: 2 x RS232, separable with jumpers

- Compatibility: compatible with IC-Socket 64-pin and hole matrix board

- Pin-Distance: 2.54 mm

- LED: 4 LEDs, separable with jumpers

- Circuit: built on the recommendation of the manufacturer

- Programming: ISP or JTAG connector

- Pin configuration of AVR-Module: shown at the left picture

- Pin configuration ISP & JTAG connectors: 10-pin, standard of Atmel

- Functionality: tested, ready for use

- Conformity: RoHS Compliance

- **Produced** in Germany

- Description:

We offer you more flexibility by the development. By means of quartz socket it is possible to choose another frequency easier and faster. IC-Socket makes possible the fast installation of AVR-Module and fits the hole matrix board with the hole distance 2.54 mm. All pins of micro controller are connected with the pins of module and positioned in the logical order, that makes the development work easier. The circuit of the module is built on the recommendation of the manufacturer: A/D converter, reset, ISP, JTAG, RS232, LEDs. Jumper configuration helps you to make the right settings. A suppressor diode is responsible for the security of AVR-Module. We offer you a very simple installation and use of AVR-Module for the beginner as well as for the advancer.

Electrical Characteristics

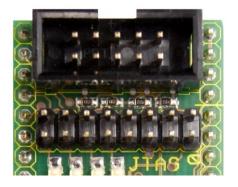
Min Typ	Max
---------	-----

for <u>all</u> modu	ıles with	Оре	erating Temperat	ture
MAX3232EID	(actual)	40.0C		95 OC
MAX3232IDR	(actual)	- 40 °C		85 °C
MAX3232ECD		0 °C		70 °C

	C	perating Voltag	e
• with maximum frequency 16 MHz	4.5 V		5.5 V
• with maximum frequency 8 MHz	3.0 V		5.5 V

	Maximur	n DC Current pe	r I/O Pin
• with operating voltage 5 V			20 mA
• with operating voltage 3 V			10 mA

more electrical characteristics you will find on the page 365 in the data sheet AT90CAN128.pdf


- ► Voltage Suppressor P6SMB6.8A
- ▶ 2-layer PCB DIN ISO 9001
- ▶ with UL-Approbation
- ► 4x LED yellow 2V 20 mA 140° 39 mcd

Possible Modifications

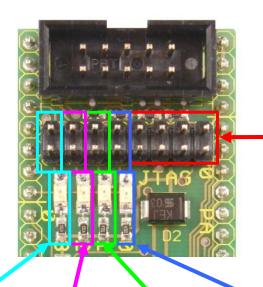
- m with mounted quartz (without quartz socket)
- m without laterally pins

Programming

JTAG 1

ISP²

Pin Configuration JTAG-Connector


(9)	(7)	(5)	(3)	(1)
TDI	VCC	TMS	TDO	TCK
(10)	(8)	(6)	(4)	(2)
GND		Reset	VCC	GND

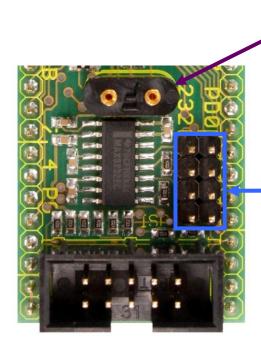
Pin Configuration ISP-Connector

(2)	(4)	(6)	(8)	(10)
VCC	GND	GND	GND	GND
(1)	(3)	(5)	(7)	(9)
MOSI	GND	Reset	SCK	MISO

- 1 When programming with JTAG the JPI-(1-4)-jumpers should be set.
- 2 When programming with ISP the UART-jumpers JP2-3 and JP2-1 should not be set.

Settings

JTAG-jumpers JP1-(1-4)

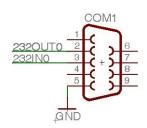

When programming with JTAG the jumpers should be set in the red square.

LED-jumper 3	LED-jumper 2	LED-jumper 1	LED-jumper 0
+LED 3 (yellow)	+LED 2 (yellow)	+LED 1 (yellow)	+LED 0 (yellow)
+resistor	+resistor	+resistor	+resistor
Jumper is connected to the pin PF3	Jumper is connected to the pin PF2	Jumper is connected to the pin PF1	Jumper is connected to the pin PF0

Jumpers set-up

JP1-8	JP1-7	JP1-6	JP1-5	JP1-4	JP1-3	JP1-2	JP1-1
LED 3		LED 1	LED 0	TDI	TDO	TMS	TCK
Pin PF3		Pin PF1	Pin PF0	Pin PF7	Pin PF6	Pin PF5	Pin PF4

-7- © 2011 ALVIDI


Quartz socket

UARTs-jumpers

JP2-4	PD2
JP2-3	PE0
JP2-2	PD3
JP2-1	PE1

The UARTs-pins can be parted from RS232 transceivers with these jumpers. When programming with ISP the UART-jumpers JP2-3 (PE0) and JP2-1 (PE1) should not be set.

Connection of D-SUB 9-pin female connector (serial port/COM1)

	D-SUB 9-p.	AL-AVREB_CAN
CH 0	Pin 2	36_232OUT0
example in the	Pin 3	34_232IN0
left picture	GND	32_GND
CH 1	Pin 2	35_232OUT1
	Pin 3	33_232IN1
	GND	32_GND